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LANGUAGES 

    In English we distinguish the three different entities: letters, words, and sentences. There is a 
certain parallelism between the fact that groups of letters make up words and the fact that 
groups of words make up sentences. Not all collections of letters form a valid word, and not all 
collections of words form a valid sentence. The analogy can be continued. Certain groups of 
sentences make up coherent paragraphs, certain groups of paragraphs make up coherent stories, 
and so on. 

   This situation also exists with computer languages. Certain character strings are recognizable 
words (GOTO, END ...). Certain strings of words are recognizable commands. Certain sets of 
commands become a program (with or without data). 

  To construct a general theory that unifies all these examples, it is necessary for us to adopt a 
definition of a “most universal language structure,” that is, a structure in which the decision of 
whether a given string of units constitutes a valid larger unit is not a matter of guesswork but is 
based on explicitly stated rules. 

  It is very hard to state all the rules for the language “spoken English,” since many seemingly 
incoherent strings of words are actually understandable utterances. This is due to slang, idiom, 
dialect, and our ability to interpret poetic metaphor and to correct unintentional grammatical 
errors in the sentences 

   However, as a first step to defining a general theory of abstract languages, it is right for us to 
insist on precise rules, especially since computers are not quite as forgiving about imperfect input 
commands as listeners are about informal speech. 

  When we call our study the Theory of Formal Languages, the word “for- mal” refers to the fact 
that all the rules for the language are explicitly stated in terms of what strings of symbols can 
occur. No liberties are tolerated, and no reference to any “deeper understanding” is required. 
Language will be considered solely as symbols on paper and not as expressions of ideas in the 
minds of humans. In this basic model, language is not communication among intellects, but a 
game of symbols with formal rules. The term “formal” used here emphasizes that it is the form 
of the string of symbols we are interested in, not the meaning. 

  We begin with only one finite set of fundamental units out of which we build structures. We 
shall call this the alphabet. A certain specified set of strings of characters from the alphabet will 
be called the language. Those strings that are permissible in the language we call words. The 
symbols in the alphabet do not have to be Latin letters, and the sole universal requirement for a 
possible string is that it have only finitely many symbols in it.  
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   We shall wish to allow a string to have no letters. This we call the empty string or null string, 
and we shall denote it by the symbol Λ or ɛ. No matter what language we are considering, the 
null string is always Λ. Two words are considered the same if all their letters are the same and in 
the same order so there is only one possible word of no letters. For clarity, we do not allow the 
symbol Λ to be part of the alphabet for any language. 

   The most familiar example of a language for us is English. The alphabet is the usual set of letters 
plus the apostrophe and hyphen. Let us denote the whole alphabet by the Greek letter capital 
sigma (Σ). 

Σ = { a b c d ……z ‘ - } 

     Sometimes we shall list a set of elements separated by spaces and sometimes by commas. If we 
wished to be super meticulous, we would also include in Σ the uppercase letters and the seldom 
used diacritical marks. 

   We can now specify which strings of these letters are valid words in our language by listing them 
all, as is done in a dictionary. It is a long list, but a finite list, and it makes a perfectly good 
definition of the language. If we call this language ENGLISH-WORDS we may write 

ENGLISH-WORDS = (all the words (main entries) in a standard dictionary} 

   In the line above, we have intentionally mixed mathematical notation (the equal sign, the braces 
denoting sets) and a prose phrase. This results in perfectly understandable communication; we take 
this liberty throughout. All of our investigations will be agglomerates of informal discussion and 
precise symbolism. 

   Of course, the language ENGLISH-WORDS, as we have specified it, does not have any 
grammar. If we wish to make a formal definition of the language of the sentences in English, we 
must begin by saying that this time our basic alphabet is the entries in the dictionary. Let us call 
this alphabet Γ, the capital gamma. 

Γ ={the entries in a standard dictionary, plus a blank space, plus the usual punctuation marks} 

   In order to specify which strings of elements from Γ produce valid words in the language 
ENGLISH-SENTENCES, we must rely on the grammatical rules of English. This is because we 
could never produce a complete list of all possible words in this language; that would have to be a 
list of all valid English sentences. Theoretically, there are infinitely many different words in the 
language ENGLISH-SENTENCES. For example: 

I ate one apple.  

I ate two apples. 

I ate three apples. 
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   The trick of defining the language ENGLISH-SENTENCES by listing all the rules of English 
grammar allows us to give a finite description of an infinite language. 

   If we go by the rules of grammar only, many strings of alphabet letters seem to be valid words, 
for example, “I ate three Tuesdays.” In a formal language we must allow this string. It is 
grammatically correct; only its meaning reveals that it is ridiculous. Meaning is something we do 
not refer to in formal languages. we are primarily interested in syntax alone, not semantics or 
diction. We shall be like the bad teacher who is interested only in the correct spelling, not the ideas 
in a home- work composition. 

   In general, the abstract languages we treat will be defined in one of two ways. Either they will 
be presented as an alphabet and the exhaustive list of all valid words, or else they will be presented 
as an alphabet and a set of rules defining the acceptable words. 

   Earlier we mentioned that we could define a language by presenting the alphabet and then 
specifying which strings are words. The word “specify” is trickier than we may at first suppose. 
Consider this example of the language called MY-PET. The alphabet for this language is 

{a c d g o t} 

   There is only one word in this language, and for our own perverse reasons we wish to specify it 
by this sentence: 

   If the Earth and the Moon ever collide, then MY-PET = {cat} 

but, if the Earth and the Moon never collide, then MY-PET = {dog} 

  One or the other of these two events will occur, but at this point in the history of the universe it 
is impossible to be certain whether the word dog is or is not in the language MY-PET. 

   This sentence is not an adequate specification of the language MY-PET because it is not useful. 
To be an acceptable specification of a language, a set of rules must enable us to decide, in a finite 
amount of time, whether a given string of alphabet letters is or is not a word in the language. 

   The set of rules can be of two kinds. They can either tell us how to test a string of alphabet letters 
that we might be presented with, to see if it is a valid word; or they can tell us how to construct all 
the words in the language by some clear procedures.  

   Let us consider some simple examples of languages. If we start with an alphabet having only 
one letter, the letter x, Σ = {x} 

we can define a language by saying that any nonempty string of alphabet characters is a word. 

L1 = {x  xx  xxx xxxx  ...}  

or to write this in an alternate form L1= {xn  for n= 1 2 3 …} 
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   In this language, as in any other, we can define the operation of concatenation, in which two 
strings are written down side by side to form a new longer string. In this example, when we 
concatenate the word xxx with the word xx, we obtain the word xxxxx. The words in this language 
are clearly analogous to the positive integers, and the operation of concatenation is analogous to 
addition: 

xn concatenated with xm is the word xn+m 

   It will often be convenient for us to designate the words in a given language by new symbols, 
that is, other than the ones in the alphabet. For example, we could say that the word xxx is called 
a and that the word xx is b. Then to denote the word formed by concatenating a and b we write the 
letters side by side: 

ab = xxxxx 

   It is not always true that when two words are concatenated, they produce another word in the 
language.  For example, if the language is 

L2 = { x  xxx xxxxx xxxxxxx ...} 

                                                       = ( x2n + 1 for n = 0 1 2 3 . . } 

   Then a = xxx and b = xxxxx are both words in L2, but their concatenation ab = xxxxxxxx is not 
in L2 Notice that the alphabet for L2 is the same as the alphabet for L1. Notice also the liberty we 
took with the middle definition. In these simple examples, when we concatenate a with b we get 
the same word as when we concatenate b with a. We can depict this by writing: ab = ba 

   But this relationship does not hold for all languages. In English when we concatenate “house” 
and “boat” we get “houseboat,” which is indeed a word but distinct from “boathouse,” which is a 
different thing—not because they have different meanings but because they are different words. 
“Merry-go-round” and “carousel” mean the same thing, but they are different words. 

EXAMPLE 

Consider another language. Let us begin with the alphabet: 

Σ= {0 1 2 3 4 5 6 7 8 9} and define the set of words: 

L3={ any finite string of alphabet letters that does not start with the letter zero } 

This language L3, then looks like the set of all positive integers written in base 10. 

L3={ 1 2 3 4 5 6 7 8  9 10 11 12 ...} 

   We say “look like” strings of instead of “is” because L3 is only a formal collection of symbols. 
The integers have other mathematical properties. If we wanted to define the language L3 so that 
it includes the string (word) 0, we could say: 
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L3(any finite string of alphabet letters that, if it starts with a 0, has no more letters after the first}   

 

DEFINITION 

   We define the function “length of a string” to be the number of letters in the string. We write 
this function using the word “length.” For example, if a = xxxx in the language L1 above, then 
length(a) = 4, If c = 428 in the language L3, then  length(c) = 3 ,or we could write directly that in 
L1 ,  length(xxxx) = 4   and in L3  length(428) = 3 . In any language that includes the empty string 
ʌ we have: length(ʌ) = 0, for any word w in any language, if length(w) = 0 then w = ʌ. We can 
now present yet another definition of L3. 
L3={any finite string of alphabet letters that, if it has length more than one, does not start with a 
zero} 

   This is not necessarily a better definition of L3, but it does illustrate that there are often 
different ways of specifying the same language. 

   There is some inherent ambiguity in the phrase “any finite string,” since it is not clear whether 
we intend to include the null string (ʌ, the string of no letters). To avoid this ambiguity, we shall 
always be more careful. The language L3 above does not include ʌ, since we intended that that 
language should look like the integers, and there is no such thing as an integer with no digits. On 
the other hand, we may wish to define a language like L1 but that does contain ʌ. 

L4 = {ʌ x xx xxx xxxx ...} 

      = ( xn   for   n = 0 1 2 3 ….  } Here we have said that X0 = ʌ, not x0 =1 as in algebra.  

In this way xn is always the string of n x’s. This may seem like belaboring a trivial point, but the 
significance of being careful about this distinction will emerge over and over again. 

   In L3 it is very important not to confuse 0, which is a string of length 1, with ʌ. Remember, 

even when ʌ is a word in the language, it is not a letter in the alphabet. 

 

DEFINITION  

   Let us introduce the function reverse. If a is a word in some language L, then reverse(a) is the 
same string of letters spelled backward, called the reverse of a, even if this backward string is not 
a word in L.   
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EXAMPLE 

                   reverse(xxx) = xxx  

                   reverse(xxxxx) = xxxxx  

                   reverse(145) = 541 

    But let us also note that in L3 , reverse(140) = 041 which is not a word in L3. 

DEFINITION 

   Let us define a new language called PALINDROME over the alphabet Σ = {a, b} 

PALINDROME ={ʌ, and all strings x such that reverse(x) = x }, If we begin listing the elements 
in PALINDROME we find PALINDROME  =  {ʌ, a,   b,   aa,   bb,   aaa,   aba, bab, bbb, aaaa,
 abba ... } 

   The language PALINDROME has interesting properties that we shall examine later. Sometimes 
when we concatenate two words in PALINDROME we obtain another word in PALINDROME 
such as when abba is concatenated with abbaabba. More often, the concatenation is not itself a 
word in PALINDROME, as when aa is concatenated with aba.. 

DEFINITION 

   Given an alphabet Σ, we wish to define a language in which any string of letters from Σ is a 
word, even the null string. This language we shall call the closure of the alphabet. It is denoted by 
writing a star (an asterisk) after the name of the alphabet as a superscript Σ* . This notation is 
sometimes known as the Kleene star after the logician who was one of the founders of this subject. 

EXAMPLE 

If Σ = ( x },   then Σ* = L4 = {ʌ  x  xx  xxx  …} 

EXAMPLE 

If Σ = {0,1 }, then  Σ *={ʌ 0 1 00 01 10 11 000 001…} . 

EXAMPLE 

If Σ = { a,b,c }, then  Σ* ={ʌ  a  b  c  aa  ab  ac  ba  bb  bc  ca  cb  cc  aaa... } 

   We can think of the Kleene star as an operation that makes an infinite language of strings of 
letters out of an alphabet. When we say “infinite language” we mean infinitely many words each 
of finite length. 

   Notice that when we wrote out the first several words in the language, we put them in size order 
(words of shortest length first) and then listed all the words of the same length alphabetically. We 
shall usually follow this method of sequencing a language. 
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   We shall now generalize the use of the star operator to sets of words, not just sets of alphabet 
letters.  

DEFINITION 

If S is a set of words, then by S* we mean the set of all finite strings formed by concatenating 
words from S, where any word may be used as often as we like, and where the null string is also 
included. 

EXAMPLE 

If S={ aa,b }, then S* ={ʌ plus any word composed of factors of aa and b} 

                                     ={ʌ plus all strings of a’s and b’s in which the a’s occur in even clumps } 

                                     ={ʌ b  aa bb aab baa bbb aaaa aabb  baab bbaa bbbb aaaab aabaa       

                                          Aabbb baaaa baabb bbaab  bbbaa bbbbb ...} 

   The string aabaaab is not in S* since it has a clump of a’s of length 3. The phrase “clump of a’s” 
has not been precisely defined, but we know what it means anyway.  

EXAMPLE 

Let S ={ a, ab }. Then S*={(ʌ plus any word composed of factors of a and ab] 

={ʌ plus all strings of a’s and b’s except those that start with b and those that contain a double b] 

= {ʌ  a  aa  ab  aaa aab  aaaa  aaab  aaba abaa  abab  aaaaa  aaaab  aaaba  aabaa  aabab
 abaaa abaab ababa...} 

  By the phrase “double b” we mean the substring bb. For each word in S* every b must have an a 
immediately to its left. The substring bb is impossible, as is starting with a b. Any string without 
the substring bb that begins with an a can be factored into terms of (ab) and (a). 

   To prove that a certain word is in the closure language S*, we must show how it can be written 
as a concatenate of words from the base set S. 

  In the last example, to show that abaab is in S* we can factor it as follows: (ab)(a)(ab) 

These three factors are all in the set S,‘ therefore their concatenation is in S*. This is the only way 
to factor this string into factors of (a) and (ab). When this happens, we say that the factoring is 
unique. Sometimes the factoring is not unique. For example, consider S={xx, xxx}. 

Then: 

S*={ʌ and all strings of more than one x }  

     ={ xn for n= 0, 2, 3, 4, 5... } 
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     ={ʌ  xx xxx   xxxx xxxxxx ...} 

   Notice that the word x is not in the language S*. The string xxxxxxx is in this closure for any of 
these three reasons. It is : (xx) (xx) (xxx) or (xx) (xxx) (xx) or (xxx) (xx) (xx)  

Also, x6 is either x2 x2 x2  or else x3x3. 

   It is important to note here that the parentheses, ( ), are not letters in the alphabet but are used 
for the sole purpose of demarcating the ends of factors. So we can write xxxxx = (xx)(xxx). In 
cases where parentheses are letters of the alphabet, Σ= { x( ) } 

                                                                         length(xxxxx) = 5 

                                                                  but length( (xx)(xxx) ) = 9 

   Let us suppose that we wanted to prove mathematically that this set S* contains all for xn for 
n≠1 Suppose that somebody did not believe this and needed convincing. We could proceed as 
follows. 

   First, we consider the possibility that there were some powers of x that we could not produce by 
concatenating factors of (xx) and ( xxx). 

   Obviously, since we can produce x4,  x5 , x6, the examples of strings that we cannot produce must 
be large. Let us ask the question, “What is the smallest power of x (larger than 1) that we cannot 
form out of factors of xx and xxx?” Let us suppose that we start making a list of how to construct 
the various powers of x. On this list we write down how to form x2, x3, x4,x5  and so on. Let us say 
that we work our way successfully up to x373, but then we cannot figure out how to form x374. We 
become stuck, so a friend comes over to us and says, “Let me see your list. How did you form the 
word x372? 

    Why don’t you just concatenate another factor of xx in front of this and then you will have the 
word x374 that you wanted.” Our friend is right, and this story shows that while writing this list out 
we can never really become stuck. This discussion can easily be generalized into a mathematical 
proof of the fact that S* contains all powers of x greater than 1. 

   We have just established a mathematical fact by a method of proof that we have rarely seen in 
other courses. It is a proof based on showing that something exists (the factoring) because we can 
describe how to create it (by adding xx to a previous case). What we have described can be 
formalized into an algorithm for producing all the powers of x from the factors xx and xxx. The 
method is to begin with xx and xxx and, when we want to produce xn, we take the sequence of 
concatenations that we have already found will produce x n-2, and we concatenate xx on to that. 

   The method of proving that something exists by showing how to create it is called proof by 
constructive algorithm. This is the most important tool in our whole study.. It is in general a very 
satisfying and useful method of proof, that is, providing that anybody is interested in the objects   
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we are constructing. We may have a difficult time selling powers of x broken into factors of xx 
and xxx. 

   Let us observe that if the alphabet has no letters, then its closure is the language with the null 
string as its only word Symbolically, we write: 

If Σ =ɸ (the empty set), then Z* = {ʌ} This is not the same as 

 If S = {ʌ},  then S* ={ʌ} 

    An alphabet may look like a set of one-letter words. If for some reason we wish to modify the 
concept of closure to refer to only the concatenation of some (not zero) strings from a set S, we 
use the notation + instead of *. For example, 

If Σ = {x},then Σ+ = {x  xx  xxx ...} which is the language L1 that we discussed before. 

If S={xx, xxx} then S+is the same as S* except for the word ʌ, which is not in S+ . This is not to 
say that S+ cannot in general contain the word ʌ. It can, but only on condition that S contains the 
word ʌ. In this case, ʌ is in S + , since it is the concatenation of some (actually one) word from S 
(ʌ itself). Anyone who does not think that the null string is confusing has missed something. It is 
already a problem, and it gets worse later. 

   If S is the set of three words  S = {w1  w2  w3} then,  

S+ ={ w1  w2  w3  w1w1  w1w2  w1w3 w2w1  w2w2  w3w3 w3w1  w3w2  w3w3 w1w1w1 w1w1w2….} 

no matter what the words w1,w2, and w3 are. 

If w1= aa,  w2 = bbb,  w3 =ʌ, then S+={ aa  bbb   A  aaaa   aabbb...} 

  The words in the set S are listed above in the order corresponding to their w-sequencing, not in 
the usual size-alphabetical order. 

   What happens if we apply the closure operator twice? We start with a set of words S and look at 
its closure S*. Now suppose we start with the set S* and try to form its closure, which we denote 
as (S*)* or S** 

   If S is not the trivial empty set, then S* is infinite, so we are taking the closure of an infinite set. 
This should present no problem since every string in the closure of a set is a combination of only 
finitely many words from the set. Even if the set S has infinitely many words, we use only finitely 
many at a time. This is the same as with ordinary arithmetic expressions, which can be made up 
of only finitely many numbers at a time even though there are infinitely many numbers to choose 
from. From now on we shall let the closure operator apply to infinite sets as well as to finite sets. 
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THEOREM 1 

For any set S of strings, we have S*= S**. 

CONVINCING REMARKS 

First let us illustrate what this theorem means. Say for example that S={a,b}. Then S* is clearly 
all strings of the two letters a and b of any finite length whatsoever. Now what would it mean to 
take strings from S* and concatenate them? Let us say we concatenated (aaba) and (baaa) and 
(aaba). The end result (aababaaaaaba) is no more than a concatenation of the letters a and b, just 
as with all elements of S*. 

aababaaaaaba 

= (aaba)(baaa)(aaba) 

= [(a)(a)(b)(a)] [(b)(a)(a)(a)] [(a)(a)(b)(a)] 

= (a)(a)(b)(a)(b)(a)(a)(a)(a)(a)(b)(a) 

Let us consider one more illustration. If S={aa, bbb}, then S* is the set of all strings where the a’s 
occur in even clumps and the b’s in groups of 3, 6, 9... Some words in S* are 

aabbbaaaa bbb bbbaa 

If we concatenate these three elements of S*, we get one big word in S**, which is again in S*. 

aabbbaaaabbbbbbaa 

= [(aa)(bbb)(aa)(aa)] [(bbb)] [(bbb)(aa)] 

This theorem expresses a trivial but subtle point. It is analogous to saying that if people are made 
up of molecules and molecules are made up of atoms, then people are made up of atoms. 

PROOF 

Every word in S** is made up of factors from S*. Every factor from S* is made up of factors 
from S. Therefore, every word in S** is made up of factors from S. Therefore, every word in S** 
is also a word in S*. We can write this as  
 

using the symbol “⊂” from Set Theory, which means “is contained in or equal to “ . 

Now in general it is true that for any set A we know that A  ⊂ A*, since in A* we can chose as a 
word any one factor from A. So if we consider A to be our set S*, we have  

 

 


